Nano-cmos Scaling Problems and Implications 1.1 Design Methodology in the Nano-cmos Era

نویسندگان

  • Ban P Wong
  • Anurag Mittal
  • Yu Cao
  • Greg Starr
چکیده

As process technology scales beyond 100-nm feature sizes, for functional and high-yielding silicon the traditional design approach needs to be modified to cope with the increased process variation, interconnect processing difficulties, and other newly exacerbated physical effects. The scaling of gate oxide (Figure 1.1) in the nano-CMOS regime results in a significant increase in gate direct tunneling current. Subthreshold leakage and gate direct tunneling current (Figure 1.2) are no longer second-order effects [1,15]. The effect of gate-induced drain leakage (GIDL) will be felt in designs, such as DRAM (Chapter 7) and low-power SRAM (Chapter 9), where the gate voltage is driven negative with respect to the source [15]. If these effects are not taken care of, the result will be a nonfunctional SRAM, DRAM, or any other circuit that uses this technique to reduce subthreshold leakage. In some cases even wide muxes and flip-flops may be affected. Subthreshold leakage and gate current are not the only issues that we have to deal with at a functional level, but also the power management of chips for high-performance circuits such as microprocessors, digital signal processors, and graphics processing units. Power management is also a challenge in mobile applications. Furthermore, optical lithography will be stretched to the limit even when enhanced resolution extension technologies (RETs) are employed. These techniques

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Power Adder Design for Nano-Scale CMOS

A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.

متن کامل

Analog/mixed-signal circuit design in nano CMOS era

This paper describes analog/mixed-signal circuit design in the nano CMOS era. Digitally-assisted analog technology is becoming more important, and as an example, our fully digital FPGA implementation of a TDC with self-calibration is shown. Since pure analog circuits are still present and “good” device modeling is required for their designs, device modeling technology for nano CMOS with complic...

متن کامل

Design and test challenges in Nano-scale analog and mixed CMOS technology

The continuous increase of integration densities in Complementary Metal–Oxide–Semiconductor (CMOS) technology has driven the rapid growth of very large scale integrated (VLSI) circuit for today's high-tech electronics industries from consumer products to telecommunications and computers. As CMOS technologies are scaled down into the nanometer range, analog and mixed integrated circuit (IC) desi...

متن کامل

Design of silicon brains in the nano-CMOS era: Spiking neurons, learning synapses and neural architecture optimization

We present a design framework for neuromorphic architectures in the nano-CMOS era. Our approach to the design of spiking neurons and STDP learning circuits relies on parallel computational structures where neurons are abstracted as digital arithmetic logic units and communication processors. Using this approach, we have developed arrays of silicon neurons that scale to millions of neurons in a ...

متن کامل

Challenges and Emerging Technologies for System Integration beyond the End of the Roadmap of Nano-CMOS

By 2020 it is very likely that nano-CMOS will reach the end of the scaling roadmap. Such end will not mean the demise of silicon technology at all. While there are uncertainties as to what will be the show-stoppers, there is a large number of transitional and compatible to CMOS technologies that will be more important than just 2-D scaling. This paper discusses possible limitations bringing the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004